Mapping Data to Graphics

Session 3

PMAP 8921: Data Visualization with R
Andrew Young School of Policy Studies
Summer 2024

Plan for today

Data, aesthetics, \& the grammar of graphics

Grammatical layers

Aesthetics in extra dimensions

Tidy data

Data, aesthetics,

\& the grammar of graphics

Long distance!

Moscow to Vilnius

Very cold!

Lots of people died!

Napoleon’s Grande Armée

Mapping data to aesthetics

Aesthetic

Visual property of a graph
Position, shape, color, etc.

Data

A column in a dataset

Mapping data to aesthetics

Data	Aesthetic	Graphic/Geometry
Longitude	Position (x-axis)	Point
Latitude	Position (y-axis)	Point
Army size	Size	Path
Army direction	Color	Path
Date	Position (x-axis)	Line + text
Temperature	Position (y-axis)	Line + text

Mapping data to aesthetics

Data	aes()	geom
Longitude	x	geom_point()
Latitude	y	geom_point()
Army size	size	geom_path()
Army direction	color	geom_path()
Date	x	geom_line() + geom_text()
Temperature	y	geom_line() + geom_text()

ggplot() template

This is a dataset named troops:

longitude latitude direction survivors

24	54.9	A	340000
24.5	55	A	340000
\ldots	\ldots	\ldots	\ldots

Mapping data to aesthetics

Data	aes()	geom
Wealth (GDP/capita)	x	geom_point()
Health (Life expectancy)	y	geom_point ()
Continent	color	geom_point()
Population	size	geom_point()

This is a dataset named gapminder_2007:

country	continent	gdpPercap	lifeExp	pop
Afghanistan	Asia	974.5803384	43.828	31889923
Albania	Europe	5937.029526	76.423	3600523
...	...	\ldots	\ldots	...

Health and wealth

continent

- Africa
- Americas
- Asia
- Europe
- Oceania

Grammatical layers

Grammar components as layers

So far we know about data, aesthetics, and geometries

Think of these components as layers

Add them to foundational ggplot() with +

Geometries Aesthetics Data

Possible aesthetics

Possible geoms

Example geom What it makes

- ${ }^{\text {deom_col() }}$	Bar charts
(0) geom_text()	Text
	Points
所审 geom_boxplot()	Boxplots
Sol geom_sf()	Maps

Possible geoms

There are dozens of possible geoms and each class session will cover different ones.

See the \{ggplot2\} documentation for complete examples of all the different geom layers

Additional layers

There are many of other grammatical layers we can use to describe graphs!

We sequentially add layers onto the foundational ggplot() plot to create complex figures

Scales

Scales change the properties of the variable mapping

Example layer

scale_x_continuous()
scale_x_continuous(breaks = 1:5)
scale_x_log10()
scale_color_gradient()
scale_fill_viridis_d()

What it does
Make the x-axis continuous
Manually specify axis ticks
Log the x-axis
Use a gradient
Fill with discrete viridis colors

Scales

scale_x_log10()

scale_color_viridis_d()

Facets

Facets show subplots for different subsets of data

Example layer

```
facet_wrap(vars(continent))
```

facet_wrap(vars(continent, year))
facet_wrap(..., ncol = 1)
facet_wrap(..., nrow = 1)

What it does

Plot for each continent
Plot for each continent/year Put all facets in one column Put all facets in one row

Facets

facet_wrap(vars(continent))

facet_wrap(vars(continent, year))

Coordinates

Change the coordinate system

Example layer	What it does
coord_cartesian ()	Plot for each continent
coord_cartesian $($ ylim $=c(1,10))$	Zoom in where y is 1-10
coord_flip()	Switch x and y
coord_polar ()	Use circular polar system

Coordinates

coord_flip()

Labels

Add labels to the plot with a single labs () layer

Example layer
 labs(title = "Neat title") Title
 labs(caption = "Something") Caption
 labs(y = "Something")
 y-axis
 labs(size = "Population") Title of size legend

Labels

```
ggplot(gapminder_2007,
    aes(x = gdpPercap, y = lifeExp,
        color = continent, size = pop)) +
    geom_point() +
scale_x_log10() +
labs(title = "Health and wealth grow togetl
    subtitle = "Data from 2007",
    x = "Wealth (GDP per capita)",
    y = "Health (life expectancy)",
    color = "Continent",
    size = "Population",
    caption = "Source: The Gapminder Projє
```


$1.0 \mathrm{e}+09$

Continent

- Africa
- Americas
- Asia
- Europe
- Oceania

Theme

Change the appearance of anything in the plot

There are many built-in themes

Example layer	What it does
theme_grey()	Default grey background
theme_bw()	Black and white
theme_dark()	Dark
theme_minimal()	Minimal

Theme

Theme

There are collections of pre-built themes online, like the \{ggthemes\} package

ggthemes

Theme

Organizations often make their own custom themes, like the BBC

Theme options

Make theme adjustments with theme()

There are a billion options here! We have a whole class session dedicated to this!

```
theme_bw() +
theme(legend.position = "bottom",
    plot.title = element_text(face = "bold"),
    panel.grid = element_blank(),
    axis.title.y = element_text(face = "italic"))
```


So many possibilities!

These were just a few examples of layers!

See the \{ggplot2\} documentation for complete examples of everything you can do

Putting it all together

We can build a plot sequentially to see how each grammatical layer changes the appearance

Start with data and aesthetics

```
ggplot(data = mpg,
    mapping = aes(x = displ,
                            y = hwy,
    color = drv))
```


Add a point geom

```
ggplot(data = mpg,
mapping = aes(x = displ,
                                    y = hwy,
                                    color = drv)) +
geom_point()
```


Add a smooth geom

```
ggplot(data = mpg,
    mapping = aes(x = displ,
                            y = hwy,
    color = drv)) +
geom_point() +
geom_smooth()
```


Make it straight

```
ggplot(data = mpg,
        mapping = aes(x = displ,
                            y = hwy,
    color = drv)) +
geom_point() +
geom_smooth(method = "lm")
```


Use a viridis color scale

```
ggplot(data = mpg,
    mapping = aes(x = displ,
        y = hwy,
    color = drv)) +
geom_point() +
geom_smooth(method = "lm") +
scale_color_viridis_d()
```


Facet by drive

```
ggplot(data = mpg,
        mapping = aes(x = displ,
            y = hwy,
    color = drv)) +
geom_point() +
geom_smooth(method = "lm") +
scale_color_viridis_d() +
facet_wrap(vars(drv), ncol = 1)
```


Add labels

```
```

ggplot(data = mpg,

```
```

ggplot(data = mpg,
mapping = aes(x = displ,
mapping = aes(x = displ,
y = hwy,
y = hwy,
color = drv)) +
color = drv)) +
geom_point() +
geom_point() +
geom_smooth(method = "lm") +
geom_smooth(method = "lm") +
scale_color_viridis_d() +
scale_color_viridis_d() +
facet_wrap(vars(drv), ncol = 1) +
facet_wrap(vars(drv), ncol = 1) +
labs(x = "Displacement", y = "Highway MPG"
labs(x = "Displacement", y = "Highway MPG"
color = "Drive",
color = "Drive",
title = "Heavier cars get lower milea{
title = "Heavier cars get lower milea{
subtitle = "Displacement indicates we
subtitle = "Displacement indicates we
caption = "I know nothing about cars"

```
```

 caption = "I know nothing about cars"
    ```
```

Heavier cars get lower mileage
Displacement indicates weight(?)

Add a theme

```
ggplot(data = mpg,
    mapping = aes(x = displ,
            y = hwy,
            color = drv)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_color_viridis_d() +
    facet_wrap(vars(drv), ncol = 1) +
    labs(x = "Displacement", y = "Highway MPG"
        color = "Drive",
        title = "Heavier cars get lower milea{
        subtitle = "Displacement indicates we
        caption = "I know nothing about cars"
    theme_bw()
```

Heavier cars get lower mileage
Displacement indicates weight(?)

Modify the theme

```
ggplot(data = mpg,
        mapping = aes(x = displ,
            y = hwy,
            color = drv)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_color_viridis_d() +
    facet_wrap(vars(drv), ncol = 1) +
    labs(x = "Displacement", y = "Highway MPG"
        color = "Drive",
        title = "Heavier cars get lower milea\xi
        subtitle = "Displacement indicates we
        caption = "I know nothing about cars"
    theme_bw() +
    theme(legend.position = "bottom",
        plot.title = element_text(face = "bo
```

Heavier cars get lower mileage
Displacement indicates weight(?)

Finished!

```
ggplot(data = mpg,
        mapping = aes(x = displ,
            y = hwy,
            color = drv)) +
    geom_point() +
    geom_smooth(method = "lm") +
    scale_color_viridis_d() +
    facet_wrap(vars(drv), ncol = 1) +
    labs(x = "Displacement", y = "Highway MPG"
        color = "Drive",
        title = "Heavier cars get lower milea{
        subtitle = "Displacement indicates we-
        caption = "I know nothing about cars"
    theme_bw() +
    theme(legend.position = "bottom",
        plot.title = element_text(face = "bo
```


Heavier cars get lower mileage

Displacement indicates weight(?)

A true grammar

With the grammar of graphics, we don't talk about specific chart types

Hunt through Excel menus for a stacked bar chart and manually reshape your data to work with it

A true grammar

With the grammar of graphics, we do talk about specific chart elements

Map a column to the x-axis, fill by a different variable, and geom_col() to get stacked bars

Geoms can be interchangable (e.g. switch geom_violin() to geom_boxplot())

Describing graphs with the grammar

Map wealth to the x-axis, health to the y-axis, add points, color by continent, size by population, scale the y-axis with a log, and facet by year

```
ggplot(data = filter(gapminder, year %in% c(:
```

ggplot(data = filter(gapminder, year %in% c(:
mapping = aes(x = gdpPercap,
mapping = aes(x = gdpPercap,
y = lifeExp,
y = lifeExp,
color = continent,
color = continent,
size = pop)) +
size = pop)) +
geom_point() +
geom_point() +
scale_x_log10() +
scale_x_log10() +
facet_wrap(vars(year), ncol = 1)

```
facet_wrap(vars(year), ncol = 1)
```


pop

- $2.5 \mathrm{e}+08$
- $5.0 \mathrm{e}+08$
7.5e+08
1.0e+09
continent
- Africa
- Americas
- Asia
- Europe
- Oceania

Describing graphs with the grammar

Map health to the x -axis, add a histogram with bins for every 5 years, fill and facet by continent

```
ggplot(data = gapminder_2007,
    mapping = aes(x = lifeExp,
    fill = continent)) +
    geom_histogram(binwidth = 5,
    color = "white") +
    guides(fill = "none") + # Turn off legend
    facet_wrap(vars(continent))
```


Describing graphs with the grammar

Map continent to the x-axis, health to the y-axis, add violin plots and semitransparent boxplots, fill by continent

```
ggplot(data = gapminder,
    mapping = aes(x = continent,
    y = lifeExp,
    fill = continent)) +
geom_violin() +
geom_boxplot(alpha = 0.5) +
guides(fill = "none") # Turn off legend
```


Aesthetics in extra dimensions

Time

Use \{gganimate\} to map variables to a time aesthetic

```
ggplot(gapminder, aes(x = gdpPercap, y = lift
            size = pop, color = col
    geom_point(alpha = 0.7) +
    scale_size(range = c(2, 12)) +
    scale_x_log10(labels = scales::label_dollaı
    guides(size = "none", color = "none") +
    facet_wrap(~continent) +
    # Special gganimate stuff
    labs(title = 'Year: {frame_time}', x = 'GDI
    transition_time(year) +
    ease_aes('linear')
```

Year: 1952

Sound

Visualize internal rhyming schemes in music

http://graphics.wsj.com/hamilton/

Animation, time, and sound

Tidy data

Data shapes

For ggplot() to work, your data needs to be in a tidy format

This doesn't mean that it's cleanit refers to the structure of the data

All the packages in the \{tidyverse\} work best with tidy data; that why it's called that!

Tidy data

Each variable has its own column

Each observation has its own row

Each value has its own cell

From chapter 12 of R for Data Science

Untidy data example

Real world data is often untidy, like this:

| | A | B | C | D | |
| :---: | :--- | ---: | ---: | ---: | ---: |
| 1 | Number of incidents | | | | |
| 2 | | | | | |
| 3 | Office | 2015 | 2016 | 2017 | |
| 4 | Utah County | 134 | 145 | 167 | |
| 5 | Salt Lake County | 302 | 334 | 331 | |
| 6 | Davis County | 254 | 288 | 299 | |
| 7 | Juab County | 78 | 82 | 87 | |
| 8 | | | | | |
| 9 | bold = needs verification | | | | |
| 10 | yellow = compiled from different source | | | | |
| 11 | | | | | |

Tidy data example

Here's the tidy version of that same data:

| | A | | B | C | | D |
| :--- | :--- | ---: | ---: | ---: | :---: | :---: |
| 1 | Year | Incidents | Needs Verification | Different Source | | |
| 2 | Office | Utah County | 2015 | 134 | FALSE | FALSE |
| 3 | Salt Lake County | 2015 | 302 | TRUE | FALSE | |
| 4 | Davis County | 2015 | 254 | FALSE | FALSE | |
| 5 | Juab County | 2015 | 78 | FALSE | FALSE | |
| 6 | Utah County | 2016 | 145 | FALSE | TRUE | |
| 7 | Salt Lake County | 2016 | 334 | FALSE | FALSE | |
| 8 | Davis County | 2016 | 288 | FALSE | FALSE | |
| 9 | Juab County | 2016 | 82 | TRUE | TRUE | |
| 10 | Utah County | 2017 | 167 | TRUE | FALSE | |
| 11 | Salt Lake County | 2017 | 331 | FALSE | FALSE | |
| 12 | Davis County | 2017 | 299 | FALSE | TRUE | |
| 13 | Juab County | 2017 | 87 | FALSE | FALSE | |
| a | | | | | | |

This is plottable!

Wide vs. long

Tidy data is also called "long" data

| wide | | | |
| :---: | :---: | :---: | :---: |
| id | x | y | z |
| 1 | a | c | e |
| 2 | b | d | f |

| long | | |
| :---: | :---: | :---: |
| | | |
| id | key | val |
| 1 | x | a |
| 2 | x | b |
| 1 | y | C |
| 2 | y | d |
| 1 | Z | e |
| 2 | Z | f |

Moving from wide to long

Nowadays, gather() is called pivot_longer() and spread () is called pivot_wider()
wide

